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Abstract A key challenge in the estimation of tropical

arthropod species richness is the appropriate management

of the large uncertainties associated with any model. Such

uncertainties had largely been ignored until recently, when

we attempted to account for uncertainty associated with

model variables, using Monte Carlo analysis. This model is

restricted by various assumptions. Here, we use a technique

known as probability bounds analysis to assess the

influence of assumptions about (1) distributional form and

(2) dependencies between variables, and to construct

probability bounds around the original model prediction

distribution. The original Monte Carlo model yielded a

median estimate of 6.1 million species, with a 90 % con-

fidence interval of [3.6, 11.4]. Here we found that the

probability bounds (p-bounds) surrounding this cumulative

distribution were very broad, owing to uncertainties in

distributional form and dependencies between variables.

Replacing the implicit assumption of pure statistical
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independence between variables in the model with no

dependency assumptions resulted in lower and upper

p-bounds at 0.5 cumulative probability (i.e., at the median

estimate) of 2.9–12.7 million. From here, replacing prob-

ability distributions with probability boxes, which repre-

sent classes of distributions, led to even wider bounds

(2.4–20.0 million at 0.5 cumulative probability). Even the

100th percentile of the uppermost bound produced (i.e., the

absolutely most conservative scenario) did not encompass

the well-known hyper-estimate of 30 million species of

tropical arthropods. This supports the lower estimates made

by several authors over the last two decades.

Keywords Host specificity � Model � Monte Carlo �
Uncertainty

Introduction

Extrapolating global estimates of tropical arthropod species

richness from samples, as first proposed by Erwin (1982)

and revisited by many since (e.g., Thomas 1990; Stork

1988, 1993; Ødegaard 2000; Novotný et al. 2002), is an

intriguing exercise because it potentially offers a signifi-

cant short-cut that would save having to count species one

by one, but at the same time it is vulnerable to producing

massively misleading estimates, owing ultimately to the

need to base extrapolations on host specificity measure-

ments made for a minute proportion of all tropical tree

species. The models are typically based upon a sample of

beetle species collected from one or several tree species.

This is because beetles are the most common taxon,

accounting for about 25 and 40 % of all described insects

and species, respectively (Hammond 1992; Yeates et al.

2003). Then, by making assumptions about host specificity

to trees, the number of tropical tree species in the world,

the proportions of species in the canopy and ground, and

the proportion of all arthropods that are beetles, one can

estimate how many tropical arthropod species might exist.

The model described above is a model of mean behav-

iour, that is, the average state of one parameter (species

richness) of a far more complicated system over time. An

individual-based model, where individual species, and

even individual insects, are represented as discrete units

would plainly be an insurmountable undertaking. For

example, in this mean-behaviour model, the host specificity

is a single parameter, but in an individual-based model it

could require consideration of such things as the number of

individual trees per tree species and hence the size of the

populations per beetle species, the evolutionary life time of

individual tree species, the number of months during which

each tree carries leaves to be eaten by phytophages, the

number of closely related tree species that might serve as a

pool of phytophagous species to colonise a focal tree

species, and the niche breadth and intraspecific differenti-

ation of the tree species.

Until recently, all such extrapolation mean-behaviour

models were purely deterministic; that is, despite the

considerable uncertainties associated with the various

parameters, no attempts were made to account for these. To

this end, we recently published a probabilistic model

(Hamilton et al. 2010, 2011), which has been seen as a

significant step forward because it was the first attempt to

explicitly deal with uncertainties in the extrapolation pro-

cess (May 2010). In line with previous models, the model

took the following form:

NAi ¼ xc=pcgpba

� �
nt; ð1Þ

where NAi is the estimator of the number of tropical

arthropod species under the assumption of independence

between variables, x is the average effective specialisation

(May 1990) of herbivorous beetle species across all tree

species, c is a correction factor for non-herbivorous beetle

species, pba is the proportion of canopy arthropod species

that are beetles, pcg is the proportion of all arthropod spe-

cies found in the canopy, and nt is the number of tropical

tree species. Note the change in notation for pba and pcg

from the original model; this was done because in retro-

spect the original notation was potentially ambiguous and

confusing (see Hamilton et al. 2010, 2011). Probability

distributions were assigned to all parameters.

Implementation of our original model was achieved

using Latin Hypercube Sampling (LHS), a specialised form

of Monte Carlo simulation wherein probability distribu-

tions are sampled in a stratified random manner (McKay

et al. 1979). As with any modelling technique, Monte Carlo

simulation necessitates assumptions. Thus, while this was

the first attempt to account for uncertainty, the model (1)

made certain assumptions about distributional form used to

represent uncertainty and (2) did not consider potential

dependencies between variables.

Before considering the relevance of assumptions about

distributional form, we need to appreciate the fundamental

nature of uncertainty. While various taxonomies of

uncertainty have been proposed (Kahneman and Tversky

1982; Morgan and Henrion 1990; Regan et al. 2002), there

are in essence only two basic forms—variability and

ignorance (Casti 1990; Benke et al. 2007). Variability

represents natural randomness or stochasticity and cannot

be reduced, and is often called aleatory uncertainty. Igno-

rance, on the other hand, is reducible and arises from

numerous factors, including, inter alia, measurement error,

lack of data and small sample sizes, and personal biases,

and is also known as epistemic uncertainty. Theoretically,

different methods are required to propagate ignorance and

variability (Ferson and Ginzburg 1996). This can be
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attempted in the Monte Carlo framework using a technique

known as Second-Order Monte Carlo, wherein variability

is represented by a probability distribution and ignorance is

characterised in an outer-loop in one of a number of ways,

such as alternative model scenarios or distributional shapes

(Vose 2000). However, as pointed out by Regan et al.

(2004), Second-Order Monte Carlo still requires a sub-

jective assessment of the realistic range of input distribu-

tions. In fact, the process is innately contradictory, because

the greater the ignorance, the more data are required to

specify bounds on the distribution. Of course, a greater

amount of data should lead to narrower bounds for the

variable’s distribution.

This conundrum often leaves the Monte Carlo analyst

with little choice but to construct a one-dimensional model,

wherein variability and ignorance are confounded in simple

distributions, as we noted in our original paper. For

example, very little information existed for variable c in

our model, a correction factor for non-herbivorous beetle

species. Ødegaard (2000) identified seven different studies

relevant to the determination of c. There will of course be

true natural variability associated with c, as it would be

unreasonable to expect that the ratio of herbivorous to non-

herbivorous beetle species would be constant across all tree

species throughout the tropics and at all tropical locations.

Likewise, ignorance emerges from the facts that the

handful of studies used to estimate c use different methods,

are all subject to various limitations associated with sam-

pling arthropod faunas, and all have associated biases

inherent with site selection (i.e., c would ideally be deter-

mined from studies of randomly selected tree species at

randomly selected sites across the tropics if their sole

purpose was to contribute to the estimation of this variable

for this model).

With such limited information available, it was clearly

not possible to propagate variability and ignorance sepa-

rately for c or the other variables in the model (Hamilton

et al. 2010). Rather, the approach taken was to consider

them together using Uniform distributions. The rationale

for using the Uniform distribution to represent highly

uncertain environmental variables is that it is the most

conservative approach (e.g., Brook et al. 2003; Mara et al.

2007). This makes intuitive sense because we have no

reason to favour the selection of any value in the range over

another. Upon closer inspection though, the Uniform

actually makes some potentially significant assumptions

about a variable. Consider c again, which covers the

interval [1.79, 2.70]. The Cumulative Distribution Function

(CDF) of a Uniform distribution for this interval is a per-

fectly linear monotonically increasing function where the

mean = mode = median = 2.25. In theory, an infinite

number of distributions could describe this interval, and

these would be bounded within a box defined by two

vertical lines extending from 0 to 100 % cumulative

probability at the minimum and maximum values. But

there can be only one true distribution representing vari-

ability for this interval, yet its form is unknown to us, and

this ignorance needs to be expressed through allowing

variation in shape. Using a single distribution (be it Uni-

form, Triangular or something else) ignores shape uncer-

tainty (a sub-set of ignorance), and therefore leads to an

overstatement of confidence.

The second problem associated with the application of

Monte Carlo techniques to ecological models is that

uncertainties about dependencies between variables cannot

be expressed (Ferson 1996, 2002). Knowledge about

dependencies is typically very poor in ecological models.

Clearly, natural systems are complex and dependencies

between variables are likely to exist, and these species

richness estimation models are no exception. For example,

the Janzen–Connell hypothesis (Janzen 1970; Connell

1971) proposes that predation on plants (in part by

arthropods) is one of the mechanisms leading to the high

plant richness found in the tropics. But there is also a

reciprocal relationship because a greater diversity of plant

resources provides opportunities for arthropods to spe-

cialise over time and thus diversify (Janz et al. 2006).

Therefore, over evolutionary time, plant and arthropod

communities interact through positive feedback and this

increases the richness of both groups. Of course, the exact

details and form of such dependencies are unclear, but the

fact that they could exist means that they should not be

ignored. It is possible that the dependencies themselves are

not stable, and are likely to change over evolutionary time

and even as a function of anthropogenic changes. Highly

specialised species, for example, are not necessarily des-

tined for an evolutionary dead-end, and can even give rise

to generalists (Colles et al. 2009). Despite the complexity

of such dependencies, the time is ripe to at least introduce

the concept to species richness models so that advances in

evolutionary biology can be used to modify these simple

sample extrapolation models.

With respect to modelling dependencies, the default

approach of independence, which is rarely stated explicitly,

is intuitively appealing because there is usually not a clear

dependency relationship between the various pairs of

variables. However, as noted by Tucker and Ferson (2003),

independence implies zero correlation but zero correlation

does not demand independence. Furthermore, the possi-

bility of higher-order dependencies should not be excluded.

That is, not all dependencies will be pair-wise, between

two variables: some could be multivariate. Consequently,

Ferson (2002) suggests that models should start by making

the assumption of dependence between all variables and at

all levels, and independence should be assumed only when

sound empirical information exists to support it. Vose
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(2000), whilst acknowledging it is a contentious issue,

takes the opposing view, and suggests that one should

avoid attempting to model correlation ‘where there is

neither a logical reason nor evidence for its existence.’ In

line with many Monte Carlo ecological models of systems

wherein very little is known about the nature of inter-var-

iable dependencies (Jonzen et al. 2002; Brook et al. 2003),

our original species richness model invoked Vose’s phi-

losophy. While dependencies can be specified in the Monte

Carlo construct, uncertainty about their nature—magnitude

and form—cannot be accommodated. In other words,

ignorance about the dependencies cannot be included.

Also, as noted by Ferson et al. (2004), the use of correlation

coefficients to define dependencies—the typical approach

used in Monte Carlo (Vose 2000)—is weak, as a depen-

dency needs to be described by a complete dependency

function (a copula), and several copulae can in fact have

the same correlation. Finally, Monte Carlo methods do not

readily allow for modelling of higher-order dependencies.

Probability bounds (p-bounds) analysis necessitates

neither subjective assumptions about distributional form

nor the nature of dependencies, and has proved useful in

ecological models, where large uncertainties are often

associated with these properties (Ferson 2002; Regan et al.

2002). Briefly, p-bounds analysis deals with classes of

distributions rather than individual distributions (Frank

et al. 1987; Williamson and Downs 1990). It not only

offers a method for computing the bounds for a given

variable but also enables the convolution (e.g., multipli-

cation, division, addition, subtraction or exponentiation) of

these distributional classes, and thus propagation of igno-

rance and variability together, through the model. While

confidence intervals or credible intervals set bounds around

a statistic for a variable, effectively as a function of its

distribution, p-bounds are bounds surrounding the proba-

bility distribution itself. P-bounds must be expressed in

terms of the CDF, not probability density or mass func-

tions. In essence, p-bounds analysis can be seen as a highly

conservative technique for determining the limits of an

infinite array of possible CDFs, and it has been described

by Burgman (2005) simply as a more honest approach

because the analyst is not forced to make unjustified

assumptions to satisfy a mathematical framework (cf.

Monte Carlo). Philosophically, p-bounds analysis involves

specifying total possible uncertainty and then explicitly

removing it, whereas Monte Carlo approaches require

uncertainty to be explicitly included. Ferson (2002)

describes p-bounds analysis as a useful method for pro-

viding ‘quality assurance for Monte Carlo results’. Regan

et al. (2002), for example, found for a food-web model that

the p-bounds analysis was useful for checking the plausi-

bility of a Monte Carlo model. It is also worth noting that

they found the p-bounds envelope on the CDF to be

markedly broader than one generated by a second-order

Monte Carlo analysis.

Here we use probability bounds analysis to explore the

implications of assumptions on the independence of vari-

ables and distributional forms used to account for uncer-

tainties made by a previous model on the global species

richness estimate for tropical arthropods.

Materials and methods

Hamilton et al. (2010, 2011) presented two models, A and

B, which were respectively based on the estimated number

of tree species in the tropics and the number of tropical tree

genera in New Guinea alone. Here, p-bounds modelling is

applied to Model A only (Eq. 1), as this is overwhelmingly

the most common approach to the problem (Erwin 1982;

Ødegaard 2000; Stork 1988; Thomas 1990). Furthermore,

the two models are otherwise analogous. Model A is

described in detail in Hamilton et al. (2010), with termi-

nology specifically appropriate to the LHS methodology

used.

For the LHS implementation of Model A the following

Uniform distributions were used for four variables: c =

1.79–2.70, pcg = 0.25–0.66, pba = 0.18–0.33, nt = 43,000–

50,000. The variable x is the product of nk, the number

of herbivorous canopy beetle species on tree species k

(k ¼ 1; 2; . . .; l), and fk, the proportion of the beetle species

effectively specialised on that species (see Hamilton et al.

2010 for calculation of fk). A distribution for x was then

obtained by producing 500,000 non-parametric bootstrap

estimates of nkfk. The reader is also directed to the published

corrigendum (Hamilton et al. 2011). It is also important to note

that x represents an estimate of the average effective spe-

cialisation rather than the effective specialisation of a given

tree species, nkfk. A distribution of x is what is required for this

model. Drawing realisations from the distribution of nkfk
would result in a distribution of imprecise estimates of tropical

arthropod species richness (i.e., where each estimate is based

on a single tree species), rather than a distribution of precise

estimates with each being based upon the suite of species. This

potential pitfall is common in uncertainty models, as descri-

bed by Karavarsamis and Hamilton (2010) in a health risk

context.

Calculations in p-bounds analysis are made on p-boxes.

A p-box is defined as the class of CDFs (F(y)) bounded by

a pair of CDFs, FðyÞ and FðyÞ, such that FðyÞ�FðyÞ�
FðyÞ. In our models, two types of p-boxes were constructed

for each variable. First, the entire cumulative probability

space within the possible range for the variables was rep-

resented using ‘minimum–maximum’ (min–max) boxes.

This is superficially, and perhaps intuitively, analogous to

the use of a Uniform distribution in a Monte Carlo analysis,
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although it is in fact quite different because it permits all

possible cumulative distributions between specified 0th and

100th cumulative percentiles. Second, ‘empirical histo-

gram’ p-boxes were used to include all the available esti-

mates of variables, not just the minima and maxima.

In line with the original paper, we used the review of

Ødegaard (2000) to obtain estimates of c, pcg and pba. It is

worth noting that the various studies listed by Ødegaard are

not all directly comparable, owing to different sampling

techniques, and they do not always explicitly represent the

variable of interest, but they characterise the best available

information and hence have been used by many authors in

extrapolating tropical arthropod species richness estimates

(May 1990; Thomas 1990; Stork 1988, 1993; Novotný

et al. 2002). Therefore, the following p-boxes were con-

structed, where MM and EH, respectively, denote variables

for which min–max and empirical histogram boxes have

been defined, and ‘minmax’ and ‘histogram’ is the

respective coding terminology used by Ferson (2002):

cMM = minmax (1.79–3.37), cEH = histogram (1.79, 2.70,

1.79, 2.13, 2.27, 2.44, 2.50, 2.70), pcgMM = minmax (0.25,

0.66), pcgEH = histogram (0.25, 0.66, 0.25, 0.33, 0.5, 0.66),

pbaMM = minmax (0.18, 0.33), pbaEH = histogram (0.18,

0.33, 0.18, 0.22, 0.23, 0.23, 0.33), and ntMM = minmax

(43,000, 50,000). Note that there were only two estimates

available for nt (see Hamilton et al. 2010), hence only a

min–max box is required. All the empirical histogram

p-boxes are shown in Fig. 1. Min–max p-boxes are not

shown because they are simply vertical lines extending

from zero to 1 cumulative probability at the minima and

maxima. x is the only variable for which p-bounds were not

constructed (Fig. 1). Bootstrapping is a sampling proce-

dure, and therefore the resultant distribution will converge

to the Normal with increasing sample size, owing to the

Central Limit Theorem. P-bounds are appropriate when

uncertainty about distributional form exists, but that is not

the case here. As noted in Hamilton et al. (2010), the

dataset we used for determining the number of herbivorous

beetle species effectively specialised on a given tree spe-

cies is substantially larger than any other available dataset

for this parameter. In any case, it is necessary to use a

method that is congruent with the original model, so that

the implications of the assumptions stated above can be

assessed. Given that 500,000 bootstrap replicates were

taken, the CDF of x is Normal. This CDF jointly expresses

variability and ignorance. Empirical p-bounds constructed

from multiple bootstrap replicates simply converge to the

CDF as the number of replicates increases, and are

meaningless in the context of representing natural variation

and ignorance, reflecting nothing other than the effect of

computational sample size.

The original LHS estimate was recalculated (NAi,

Eq. 1). Additionally the following estimators of tropical

arthropod species richness were solved for:

Fig. 1 a Cumulative

distribution function of the

average effective specialisation

across all tree species (x).

b–d Empirical probability

bounds (solid lines) for the

cumulative distribution

functions of the correction

factor for non-herbivorous

arthropods (cEH), the proportion

of all arthropods found in the

canopy (pcgEH), and the

proportion of beetles that are

arthropods (pbaEH), respectively.

The dashed lines in

(b–d) represent the cumulative

distribution function for

uniform distributions defined

as follows: c = Uniform (1.79,

2.70), pcg = Uniform (0.25,

0.66), pba = Uniform (0.18,

0.33)
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NAd ¼ xc
�

pcgpba

� �
nt; ð2Þ

where the subscript d denotes that no assumptions are made

about the nature of dependencies between variables and all

variables are represented by the distributions described for

Eq. 1,

NAiMM ¼ x �j jcMM =j jpcgMM �j jpbaMM

� �
�j jntMM; ð3Þ

where all variables are assumed to be statistically

independent (i), as marked by the pipes (paired vertical

lines) either side of each operator, and most variables are

represented by min–max p-boxes,

NAdMM ¼ xcMM

�
pcgMMpbaMM

� �
ntMM; ð4Þ

NAiEH ¼ x �j jcEH =j jpcgEH �j jpbaEH

� �
�j jntEH; and ð5Þ

NAdEH ¼ xcEH

�
pcgEHpbaEH

� �
ntEH: ð6Þ

P-boxes were specified and convolved using RAMAS

Risc Calc 4.0 (Ferson 2002). Distributions with infinite

tails, such as the Normal, which was used for x, cannot be

convolved in p-bounds analysis, and therefore truncation

was enforced at 0.005 and 0.995 cumulative probability.

Truncation was not necessary for the distributions with

finite bounds (i.e., minimum–maximum and empirical

histogram). Empirical histogram bounds were constructed

using Kolmogorov–Smirnov confidence limits of 95 %.

The mathematics behind convolving p-boxes is described

elsewhere (Frank et al. 1987; Williamson and Downs

1990).

Copulae were used to convolve distributions in solving

Eqs. (2)–(6). A copula is a function that describes the

dependence relationship between multiple variables by

transforming the marginal distributions of each variable to

uniform distributions. This works because any variable in

the model, y, can be represented by a generalised inverse,

v = F-1(u), where F-1 is an inverse CDF and u is a uni-

formly distributed random variable. Thus a copula func-

tion, C, is defined as a function, f, of the generalised

inverses U ¼ u1; . . .; ud of d variables, Y ¼ y1; . . .; yd, in

the model so that

CðUÞ ¼ f F�1
1 ðu1Þ; . . .;F�1

d ðudÞ
� �

: ð7Þ

Independence is a special copula function. Where indepen-

dence is assumed CðUÞ ¼
Qd

i¼1 u1; which is identical to

the form of Eq. (1). Where no assumptions were made

about dependencies, Ferson’s et al. (2004) approach of

convolving p-boxes within Fréchet bounds was used. Let

CdðUÞ ¼
Xd

i¼1

�CðUÞ
 !

; ð8Þ

where C(U) is a copula fitting within the lower Fréchet

copula bounds

CFðUÞ ¼ max
Xd

i¼1

ui

 !

� 1; 0

 !

: ð9Þ

Thus both the lower and upper bounds of the dependency

function governing Y enclose a copula describing the depen-

dencies in terms of the general inverse U. Both the upper and

the lower bounds enclosing this copula can be expressed in

terms of the Fréchet lower bounds, which can then be used to

elucidate the nature of the dependency function of Y (Ferson

et al. 2004). All possible copulae describing Y are enclosed

within the Fréchet bounds such that no assumptions about

dependency need be made. Kendall’s grade correlation was

then used to describe the nature of the dependencies identified

through this process (Ferson et al. 2004).

Results

The Monte Carlo-LHS model yielded a median estimate of

6.1 million species, with a 90 % confidence interval of

[3.6, 11.4] million (Fig. 2a). Simply replacing the

assumption of pure statistical independence between vari-

ables in the model with no dependency assumptions

resulted in reasonably broad p-bounds (Fig. 2b), with lower

and upper bounds at 0.5 cumulative probability (i.e., at the

median estimate) of 2.9–12.7 million. Bounding the input

variables had an even larger effect on the bounds for the

prediction. In the case of min–max bounds, the probability

envelope was so wide and steep that there was negligible

difference with respect to the dependency assumptions,

with pure independence and no dependency assumptions

yielding bounds at 0.5 cumulative probability of 2.35–19.7

million and 2.4–20.0 million, respectively (Fig. 2c, d).

Furthermore, the shapes of the bounds were almost iden-

tical in both these cases. The use of empirical bounds on

the input variables had negligible impact relative to the

min–max bounds, and, in fact, for the case of no depen-

dency assumptions, the lower and upper bounds at 0.5

cumulative probability were identical (2.4–20.0 million) to

those for the parallel min–max case, but the bounds did

vary slightly in shape from those produced from the min–

max model (Fig. 2f). Likewise, under the assumptions of

pure statistical independence the empirical bounding

approach produced bounds of slightly different shape to the

min–max model, but the values at 0.5 cumulative proba-

bility were very similar (2.7–18.4 million) (Fig. 2e).

Discussion

Probability bounds analysis was used to assess the plausi-

bility of a Monte Carlo model of tropical arthropod species
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richness. While broad, the bounds rule out the possibility of

estimates of 30 million species or greater, with the 100th

percentile of the right-hand bound—i.e., the absolutely

most conservative scenario—being \30 million in each

case. P-bounds define the cumulative probability space in

which the true distribution will lie, but it is important to

note that each of the infinite number of CDFs within this

space is not equally likely. In fact, it could be argued that

this approach is markedly too conservative, as it even

allows for highly unlikely distribution forms, such as

multimodal, that are probably inappropriate for the

parameters in this model (or indeed the prediction). Inter-

estingly, the CDF of the Monte Carlo model was always

situated toward the left-hand side of cumulative probability

space defined by the p-bounds, regardless of the depen-

dency or distributional form assumptions made in assigning

these bounds. The reason for this is unknown.

Removing the assumption of independence between

variables in the original model and replacing it with no

dependency assumptions resulted in reasonably broad

p-bounds (Fig. 1b). While the state of knowledge about the

nature of dependencies between the model variables is very

poor, it is reasonable to expect that some dependencies will

indeed exist. For example, the richness and specialisation

of insects is not independent of tropical tree species rich-

ness, as illustrated through the Janzen–Connell hypothesis

(Janzen 1970; Connell 1971), but it is difficult to know the

strength of the relationship because the relative contribu-

tions of phylogenetic conservativeness and geographic

contingency and local mass effects in the assemblage of

communities remain unclear (Goßner et al. 2009). It would

also be reasonable to hypothesise that the proportion of

arthropods—including beetles—that are herbivores is

likely to be dependent upon plant species richness. On the

whole, plant-feeding arthropods are more specialised and

constrained in the diversity of their resource use than non-

plant-feeding species, such as carnivores and fungivores

(but not parasitoids) (Ross et al. 1982). It could be that this

is because dealing with plant physical and chemical her-

bivore deterrents is more digestively demanding and thus

requires a more specialised digestive system. Therefore, it

could be hypothesised that over time increasing tree

diversity would likely lead to more herbivores and alter the

ratio of herbivores to non-herbivores. The relationship

between tree species richness and the ratio of herbivores to

non-herbivores logically leads to the possibility of

Fig. 2 a Cumulative

distribution function for the

original Monte Carlo estimator

NAi (dotted curved line) and

associated 5th and 95th

confidence limits (dotted
vertical lines). The filled circle
marks the median.

b–f Probability bounds (solid
lines) for the estimation of

tropical arthropod species

richness using the following

estimators: b NAd the original

estimator but with no

dependency assumptions;

c NAiMM all variables assumed

to be statistically independent

from each other and represented

with min–max p-boxes;

d NAdMM no dependency

assumptions, min–max p-boxes;

e NAiEH statistical

independence; empirical

histogram p-boxes; f NAdEH no

dependency assumptions,

empirical histogram p-boxes.

The dotted line in each plot

represents the cumulative

distribution function for NAi
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secondary dependencies with the canopy to ground ratio,

and the proportion of non-beetle arthropods.

The canopy to ground ratio may be dependent upon

plant species diversity if there are more plant-feeding

arthropods in the canopy (e.g., Grimbacher and Stork

2007). Arthropods associated with the ground are likely to

show lower levels of specialisation (e.g., Crutsinger et al.

2008; Donoso et al. 2010). Thus, if there are more plant-

feeding arthropods in the canopy, then over evolutionary

time an increase in tree species richness might be expected

to lead to increasing arthropod richness in the canopy at a

greater rate, relative to the ground.

For similar reasons, it may be that the proportion of non-

beetle arthropods found in the canopy relative to the ground is

related to tree species richness. Unlike the Coleoptera, which

are highly diverse in their feeding ecology, species from most

insect orders are likely to have one main mode of feeding

(Ross et al. 1982). The Lepidoptera, for example, are pre-

dominantly herbivorous, while the non-ant Hymenoptera are

largely predatory or parasitoid. Because not all arthropod

orders contribute equally to global species richness (Nielsen

and Mound 2000), and herbivores are likely to have a much

tighter association to tree species richness than non-herbi-

vores, the ratio of canopy to ground diversity is likely to alter

the relative contribution of non-beetle arthropods.

Of course, these are just some examples of potential

dependencies between variables typically used in an extrapo-

lation model of species richness. The exact form of these

dependencies is unknown; there are likely to be other depen-

dencies, including those of higher-order. The theoretical

arguments given above cover only some processes that could

influence dependencies—there may indeed be other processes

negating, antagonising, or complementing these. It is for these

reasons that Fréchet’s (1935) copula was used to convolve the

distributions, as it makes no assumptions about the nature of

the dependencies. Other copulae can be used to specify other

dependencies, such as perfect, opposite, positive, negative,

straight-positive, and straight-negative, and these can be

implemented in RiscCalc (Ferson et al. 2004). With further

ecological and evolutionary insight into the nature of the

dependencies, these less conservative copulae could be used in

such models. But before any gains are to be made in narrowing

the bounds through this means, the more problematic issue of

uncertainty associated with the model variables needs to be

addressed, as discussed in the original manuscript (Hamilton

et al. 2010). This had a larger effect on the breadth of the

bounds than the independence assumption (Fig. 2b, c, e).

Since Erwin presented the extrapolation approach to esti-

mating tropical arthropod species richness, overwhelmingly

the debate has centred around what values best represent the

variables (Erwin 1988; Thomas 1990; Stork 1988, 1993;

Ødegaard 2000), but this thinking needs to be broadened to

consider the relevance of potential dependencies between

variables and the relative merits of different technical approa-

ches to uncertainty modelling in this context. Furthermore,

other methods of estimating tropical arthropod species richness

would benefit from more thorough use of uncertainty model-

ling, including, inter alia, extrapolations from known faunas

and regions, methods using ecological models, eliciting tax-

onomists’ views, and species description rates (Stork 1993).

Mora et al. (2011) recently made a step in this direction through

accommodating uncertainty in their taxonomic-level based

global species richness model, which produced a median esti-

mate of 8.7 million eukaryotic organisms on Earth (±1.3 mil-

lion SE), with 6.5 million of these being terrestrial, which

accords well with our original median estimate of 6.1 million

tropical arthropods (Hamilton et al. 2010, 2011). Another

recently published model (Costello et al. 2012), based on

species description rates, also accounted for uncertainty, and

produced a median estimate of 490,960 (95 % CI = 449,010,

477,990) terrestrial species remaining to be described, which

equates to only 1.6–1.7 million terrestrial species existing

globally, a much lower prediction than that of Mora et al.

(2011) and Hamilton et al. (2010, 2011). The variation in such

models highlights the need to consider uncertainty surrounding

this important question even more broadly, that is, not just

within models but between models. While tropical arthropods

species are of primary interest on a global scale, given their high

richness and the potentially huge numbers of undescribed

species, improved uncertainty modelling can contribute also to

other large-scale species richness estimates, be it European

marine species (Wilson and Costello 2005) or flowering plants

globally (Joppa et al. 2011). Every statistical approach has

something to offer but equally has its limitations; the next step

in tackling this important question will be to combine models

and their associated uncertainties, perhaps using techniques

such as Bayesian modelling averaging.
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Novotný V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L,

Drozd P (2002) Low host specificity of herbivorous insects in a

tropical forest. Nature 416:841–844. doi:10.1038/416841a

Ødegaard F (2000) How many species of arthropods? Erwin’s estimate

revised. Biol J Linn Soc 71:583–597. doi:10.1006/bijl.2000.0468

Regan HM, Hope BK, Ferson S (2002) Analysis and portrayal of

uncertainty in a food web exposure model. Human Ecol Risk

Assess 8:1757–1777

Regan HM, Ferson S, Berleant D (2004) Equivalence of five methods

for bounding uncertainty. Int J Approx Reason 36:1–30

Ross HH, Ross CA, Ross JPR (1982) A textbook of entomology, 4th

edn. Wiley, New York

Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J

Linn Soc 35:321–337. doi:10.1111/j.1095-8312.1988.tb00474.x

Stork NE (1993) How many species are there? Biodivers Conserv

2:215–232. doi:10.1007/BF00056669

Thomas CD (1990) Fewer species. Nature 347:237. doi:10.1038/

347237a0

Tucker WT, Ferson S (2003) Probability bounds analysis in

environmental risk assessment, 1st edn. Applied Biomathemat-

ics, Setauket

Vose D (2000) Risk analysis: a quantitative guide, 2nd edn. Wiley,

Chichester

Williamson RC, Downs T (1990) Probabilistic arithmetic I: numerical

methods for calculating convolutions and dependency bounds.

Int J Approx Reason 4:89–158

Wilson SP, Costello MJ (2005) Predicting future discoveries of

European marine species by using a nonhomogeneous renewal

process. App Stat 54:897–918

Yeates DK, Meier R, Wiegmann BM (2003) Phylogeny of true flies

(Diptera): a 250 million year old success story in terrestrial

diversification. Entomol Abh 61:170–172

Oecologia (2013) 171:357–365 365

123

http://dx.doi.org/10.1111/j.1461-0248.2009.01336.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01336.x
http://dx.doi.org/10.1007/s00442-008-1130-y
http://dx.doi.org/10.1007/s00442-008-1130-y
http://dx.doi.org/10.1007/s00442-010-1607-3
http://dx.doi.org/10.1080/10807039609383659
http://dx.doi.org/10.1016/S0951-8320(96)00071-3
http://www.ramas.com/depend.pdf
http://dx.doi.org/10.1007/BF00569989
http://dx.doi.org/10.1111/j.1442-9993.2007.01735.x
http://dx.doi.org/10.1086/652998
http://dx.doi.org/10.1186/1471-2148-6-4
http://dx.doi.org/10.2166/wh.2010.045
http://dx.doi.org/10.2166/wh.2006.055
http://dx.doi.org/10.1098/rstb.1990.0200
http://dx.doi.org/10.1126/science.1191058
http://dx.doi.org/10.1038/416841a
http://dx.doi.org/10.1006/bijl.2000.0468
http://dx.doi.org/10.1111/j.1095-8312.1988.tb00474.x
http://dx.doi.org/10.1007/BF00056669
http://dx.doi.org/10.1038/347237a0
http://dx.doi.org/10.1038/347237a0

	Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgments
	References


