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Abstract

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate

regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review

describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for char-

acterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter

are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO

spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions

experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to
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each of the world’s major forest biomes. Supplementary standardized measurements at subsets of the sites provide

additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are

experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in

precipitation (up to �30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g

N m�2 yr�1 and 3.1 g S m�2 yr�1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree

cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate

the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-

ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will

provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

Keywords: biodiversity, Center for Tropical Forest Science (CTFS), climate change, demography, forest dynamics plot, Forest

Global Earth Observatory (ForestGEO), long-term monitoring, spatial analysis

Received 31 May 2014 and accepted 6 July 2014

Introduction

Forests play key roles in biodiversity maintenance and

climate regulation. Globally, they support over half of

all described species and provide a range of valuable

ecosystem services (Groombridge, 2002; Pan et al.,

2013). Forests play a particularly significant role in cli-

mate regulation; they contain ~45% of carbon (C) in the

terrestrial biosphere and influence climate on local to

global scales through their low albedo and high rates of

evapotranspiration (Snyder et al., 2004; Bonan, 2008;

Anderson-Teixeira et al., 2012; Pan et al., 2013). Global

change pressures – including climate change, pollution,

agricultural expansion, logging, nontimber forest prod-

uct extraction, hunting, and the spread of invasive spe-

cies – are affecting forests worldwide, threatening

biodiversity, altering community composition, and

driving feedbacks to climate change (Foley et al., 2005;

Chapin et al., 2008; Wright, 2010). Understanding and

predicting such changes will be critical to biodiversity

conservation, management of ecosystem services, and

climate protection.

The Center for Tropical Forest Science (CTFS) – For-

est Global Earth Observatory (ForestGEO) is a global

network of forest research sites that is strategically

poised for monitoring, understanding, and predicting

forest responses to global change. This international

partnership currently includes 59 long-term forest

dynamics research sites in 24 countries (Fig. 1), which

have been monitored continuously since as early as

1981 (Barro Colorado Island; Condit, 1995). The net-

work applies a unique standardized tree census proto-

col across all of the world’s major forest biomes,

allowing comparison across sites (e.g., Condit, 2000;

Muller-Landau et al., 2006a,b; Chave et al., 2008; Chis-

holm et al., 2013, 2014). Supplementary measurements,

also following standardized procedures, provide addi-

tional information on plants, animals, and ecosystem

processes, making it possible to identify ecological

interactions that might otherwise be missed (e.g., Harri-

son et al., 2013). This review describes the defining fea-

tures of a CTFS-ForestGEO plot, the distribution and

representativeness of CTFS-ForestGEO sites, supple-

mentary measurements and their applications, global

change pressures across the CTFS-ForestGEO network,

and the impacts of these drivers documented to date.

Attributes of a CTFS-ForestGEO plot

The unifying measurement at all CTFS-ForestGEO sites

is an intensive census of all freestanding woody stems

≥1 cm diameter at breast height (DBH), typically

repeated every 5 years, that characterizes forest struc-

ture, diversity and dynamics over a large spatial area

(Table 1). Plot sizes are large, ranging from 2 to 120 ha,

with a median size of 25 ha and 90% ≥10 ha (Table 2).

Following standardized methodology, each individual

(genet) is mapped, tagged, and identified to species

when it first enters the census. In the case of multi-

stemmed individuals, each stem ≥1 cm DBH (ramet) is

censused. On each stem, diameter is measured at breast

height (1.3 m) or above stem irregularities (Manokaran

et al., 1990; Condit, 1998). The census includes both

trees and shrubs; henceforth, the term “trees” will refer

to all individuals in the census. An accompanying fine-

scale topographic survey allows identification of topo-

graphically defined habitat types (e.g., ridges, valleys,

slopes; Condit, 1998). This core CTFS-ForestGEO proto-

col has proved useful for a wide range of analyses

(Table 1).

Site distribution and representativeness

This core tree census protocol has been applied to 59

sites distributed among all of the world’s major forest

biomes, making CTFS-ForestGEO the only international

forest monitoring network with global distribution

(Fig. 1; Table 2). In total, 1653 ha of forest (>5.68
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Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally.

Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental fac-

tors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented.

Stippling covers nonforest areas. The analysis is described in Appendix S1.

Table 1 Attributes of a CTFS-ForestGEO census

Attribute Utility

Very large plot size Resolve community and population dynamics of highly diverse forests with many

rare species with sufficient sample sizes (Losos & Leigh, 2004; Condit et al., 2006);

quantify spatial patterns at multiple scales (Condit et al., 2000; Wiegand et al., 2007a,b;

Detto & Muller-Landau, 2013; Lutz et al., 2013); characterize gap dynamics

(Feeley et al., 2007b); calibrate and validate remote sensing and models, particularly

those with large spatial grain (Mascaro et al., 2011; R�ejou-M�echain et al., 2014)

Includes every freestanding

woody stem ≥1 cm DBH

Characterize the abundance and diversity of understory as well as canopy trees; quantify

the demography of juveniles (Condit, 2000; Muller-Landau et al., 2006a,b).

All individuals identified

to species

Characterize patterns of diversity, species-area, and abundance distributions

(Hubbell, 1979, 2001; He & Legendre, 2002; Condit et al., 2005; John et al., 2007;

Shen et al., 2009; He & Hubbell, 2011; Wang et al., 2011; Cheng et al., 2012); test theories

of competition and coexistence (Brown et al., 2013); describe poorly known plant species

(Gereau & Kenfack, 2000; Davies, 2001; Davies et al., 2001; Sonk�e et al., 2002;

Kenfack et al., 2004, 2006)

Diameter measured on

all stems

Characterize size-abundance distributions (Muller-Landau et al., 2006b; Lai et al., 2013;

Lutz et al., 2013); combine with allometries to estimate whole-ecosystem properties

such as biomass (Chave et al., 2008; Valencia et al., 2009; Lin et al., 2012; Ngo et al., 2013;

Muller-Landau et al., 2014)

Mapping of all stems and

fine-scale topography

Characterize the spatial pattern of populations (Condit, 2000); conduct spatially explicit

analyses of neighborhood influences (Condit et al., 1992; Hubbell et al., 2001;

Uriarte et al., 2004, 2005; R€uger et al., 2011, 2012; Lutz et al., 2014); characterize microhabitat

specificity and controls on demography, biomass, etc. (Harms et al., 2001; Valencia et al., 2004;

Chuyong et al., 2011); align on the ground and remote sensing measurements (Asner et al., 2011;

Mascaro et al., 2011).

Census typically repeated

every 5 years

Characterize demographic rates and changes therein (Russo et al., 2005; Muller-

Landau et al., 2006a,b; Feeley et al., 2007a; Lai et al., 2013; Stephenson et al., 2014);

characterize changes in community composition (Losos & Leigh, 2004; Chave et al., 2008;

Feeley et al., 2011; Swenson et al., 2012; Chisholm et al., 2014); characterize changes in

biomass or productivity (Chave et al., 2008; Banin et al., 2014; Muller-Landau et al., 2014)

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712
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million individuals) are currently monitored, with a

cumulative sum of >17 000 ha-years of forest monitor-

ing.

CTFS-ForestGEO sites cover a wide diversity of phys-

ical and biotic environments (Figs 1 and 2; Table 1,

Table S1). The network spans latitudes 25°S–61°N, with

sites in every biogeographic realm (sensu Olson et al.,

2001; Table 1, Table S1). Climate varies widely (Fig. 2;

Table 1, Table S2): mean annual temperature (MAT)

ranges from �3.2 °C (Scotty Creek, Canada) to 28.3 °C
(Yasuni, Ecuador), and mean annual precipitation

(MAP) from 369 mm yr�1 (Scotty Creek, Canada) to

5272 mm yr�1 (Korup, Cameroon). Elevation ranges

from 3 m.a.s.l. (Ilha do Cardoso, Brazil) to 1911 m.a.s.l.

(Yosemite, USA), and relief from 4 m (SERC, USA) to

298 m (Tiantongshan, China; Table S1). According to

the Soil Survey Staff (1999) soil classification, 11 of the

world’s 12 soil orders are represented (the exception is

Aridisols; Table 1), with corresponding marked varia-

tion in fertility.

The CTFS-ForestGEO network is generally represen-

tative of the range of bioclimatic, edaphic, and topo-

graphic conditions experienced by forests globally

(Fig. 1), as evidenced by a multivariate spatial cluster-

ing analysis with 4 km resolution (Hargrove et al.,

2003; Hoffman et al., 2013; Maddalena et al., 2014;

Appendix S1). Particularly well-represented regions

include tropical rain forests on upland or ‘tierra firme’

habitats – especially in the Indo-Malay biogeographic

zone – and temperate forests of Eastern China and East-

ern North America. Underrepresented regions include

temperate forests in the Southern Hemisphere; seasonal

forests and woodland savannas south and east of the

Amazon and in Africa; the Rocky Mountains of North

America; and boreal forests – particularly in the Pale-

arctic biogeographic zone. On a finer scale, many of the

CTFS-ForestGEO sites in Asia, Europe, and North

America are on more topographically complex terrain

compared to the original forest distribution, as are most

remaining intact forests in these regions. Forests with

extreme edaphic conditions – for example, mangrove,

swamp, and peat forests – remain almost completely

unrepresented.

Dominant vegetation types of the CTFS-ForestGEO

sites include broadleaf evergreen, broadleaf drought

deciduous, broadleaf cold deciduous, and needle-leaf

evergreen forests (Table 1). Floristically, the network

has extensive coverage, with >10 000 tree and shrub

species (and >14 000 unique site-species combinations).

Unique tree floras that are not yet represented include

the high-endemism forests of Madagascar; southern

temperate forests in New Zealand, Australia, and

southern South America; and dry forests in Africa and

the southern and eastern Amazon.

The sites are generally in old-growth or mature sec-

ondary forests and are commonly among the most

intact, biodiverse, and well-protected forests within

their region. They are subjected to a range of natural

disturbances (Table 1), and a number of sites have

experienced significant natural disturbances in recent

years (e.g., fire at Yosemite, typhoons at Palanan). In

addition, most sites have experienced some level of

anthropogenic disturbance (discussed below; Table S5).

Supplementary measurements and applications

At all sites, the core census is complemented by one or

more supplementary measurements that provide fur-

ther basis for standardized comparisons across the

world’s major forest biomes. Supplementary measure-

ments provide additional information on plants, ani-

mals, and ecosystem and environmental variables

(Table 3). In this section, we review CTFS-ForestGEO

-specific protocols and other relatively standard

Fig. 2 Current and projected future (2050) mean annual tem-

perature and precipitation of CTFS-ForestGEO sites superim-

posed upon Whittaker’s classic climate-biomes diagram

(Whittaker, 1975; Ricklefs, 2007). Dots represent average climate

from 1950 to 2000. Wedges represent the range of projected cli-

mates through 2050 as projected by the HADGEM2-ES model;

specifically, smaller and larger temperature increases represent

IPCC’s RCP 2.6 and RCP 8.5 scenarios, respectively. Biome

codes are as follows: TrRF, tropical rain forest; TrSF/S, tropical

seasonal forest/savanna; SD, subtropical desert; TeRF, temper-

ate rain forest; TeSF, temperate seasonal forest; W/S, wood-

land/shrubland; TeG/D, temperate grassland/desert; BF,

boreal forest; T, tundra. Data from WorldClim (worldclim.org);

recent climate data differ from those in Table 1. Details on cli-

mate data and analysis are given in Appendix S1; data are listed

in Table S4.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712

8 K. J . ANDERSON-TEIXEIRA et al.



Table 3 Summary of supplementary CTFS-ForestGEO measurement protocols applied at five or more sites

Measurement N sites* Description Utility

Plants

Lianas 7 (15) Lianas are included as part of the

core census; they are mapped,

identified to species, and

measured at breast height (1.3 m)

Characterize liana abundance and

diversity and changes therein (Schnitzer,

2005; DeWalt et al., 2015; Thomas et al.,

2015); understand liana impacts on tree

community (Ingwell et al., 2010).

Functional traits 33 (39)† Traits characterized include three

dimensions (maximum height and

crown diameter); leaf traits [size,

specific leaf area, thickness, (N),

(P), dry matter content]; wood

traits (stem wood density, C

content); and reproductive traits

(dispersal mode; fruit, diaspore,

and seed fresh and dry masses).

Characterize species’ differences in

physiology and ecological roles (Condit

et al., 1996; Santiago & Wright, 2007;

Muller-Landau et al., 2008; Kraft et al.,

2010; Wright et al., 2010; Westbrook et al.,

2011; Katabuchi et al., 2012; Liu et al.,

2012); detect directional changes in

functional composition (Feeley et al.,

2011; Hietz et al., 2011; Swenson et al.,

2012; Harrison et al., 2013); improve

inventory-based C stock estimates

(Martin & Thomas, 2011; Cushman et al.,

2014); parameterize models

High-precision

diameter growth

28 (32) Diameter growth is measured

weekly to annually using

dendrometer bands on a subset of

trees.

Understand effects of tree size, species,

and environmental conditions on growth;

characterize seasonal growth patterns

(McMahon & Parker, 2014); estimate the

woody stem growth component of

aboveground net primary productivity

(ANPPwood)

Flower & seed

production

24 (33) Species-level flower & seed

production are quantified using

weekly to bimonthly censuses of

60–336 0.5-m2 traps.

Quantify reproductive phenology

(Zimmerman et al., 2007); infer seed

dispersal distances (Muller-Landau et al.,

2008); quantify interannual variation and

its ecological implications (Wright et al.,

1999, 2005; Harms et al., 2000; Usinowicz

et al., 2012); detect directional changes

(Wright & Calderon, 2006)

Seedling

performance

21 (30) Seedling establishment, growth and

survival are quantified annually in

three 1-m2 plots associated with

each seed trap.

Characterize density- and distance-

dependent effects on con- and hetero-

specific seedling recruitment (Harms

et al., 2000; Comita et al., 2010; Lebrija-

Trejos et al., 2013); Understand

postdisturbance successional dynamics

(Dalling et al., 1998; Dalling &

Hubbell, 2002)

DNA barcoding 27 (28) Short DNA sequences from a

standard position within the

genome are used to construct

phylogenies and distinguish

individual species from one

another. Can be applied to all

tissues of the plants (e.g., roots,

pollen, leaves, and bark) or

animals. Over 3000 plant species

have been barcoded to date.

Build phylogenetic trees of local

community relationships and investigate

constraints on the assembly of

communities (Pei et al., 2011; Swenson

et al., 2011; Lebrija-Trejos et al., 2013);

identify tree roots to species (Jones et al.,

2011); reconstruct networks of feeding,

pollination, and parasitism �(Hrcek

et al., 2011)

Animals

Arthropods 5 (13)

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712
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Table 3 (continued)

Measurement N sites* Description Utility

A variety of key taxa are monitored

1–4 times annually‡using a variety

of techniques (light traps, Winkler

extractors, McPhail traps, butterfly

transects, termite transects, and

bee baits).

Elucidate the role of arthropods in forest

ecosystems (Novotny et al., 2002;

Novotny & Basset, 2005); evaluate the

impact of global change on the full range

of forest trophic levels

Vertebrates 14 (34) Camera trapping is used to monitor

terrestrial mammals.

Elucidate the role of vertebrates in forest

ecosystems; detect directional changes

Ecosystem & Environmental

Aboveground

biomass

59 Ground based: Biomass is estimated

from core census data using best

available allometries, often in

combination with site-specific

height and wood density data.

Characterize spatial variation in biomass

within sites in relation to environmental

gradients and species diversity (Valencia

et al., 2009; Chisholm et al., 2013); detect

directional changes in C stocks (Chave

et al., 2008; Muller-Landau et al., 2014);

calibrate and evaluate models of biomass

based on airborne LiDAR (Asner et al.,

2011; Mascaro et al., 2011; R�ejou-M�echain

et al., 2014)

(15) Airborne: LiDAR flights (one-time

or repeated) provide data on

biomass and tree architecture.

Dead wood/CWD 21 (25) Standing dead wood and fallen

coarse woody debris are surveyed

by transect or comprehensive

survey.

Quantify C stocks in dead wood and

changes therein

Fine root biomass

& soil carbon

16 (32) Measured to 3 m depth on every

hectare, with additional replicates

to shallower depths.

Understand the role of associations

between plants and mycorrhizal fungi in

driving soil carbon storage (Peay et al.,

2010; Averill et al., 2014)

Soil nutrients 23 (26) Extractable soil cations, available N,

nitrogen mineralization rates, and

extractable phosphorus at 0 to 10-

cm depths are measured at high

spatial resolution.

Characterize species’ microhabitat

associations (Lee et al., 2002; Davies et al.,

2003; John et al., 2007; Tan et al., 2009;

Baldeck et al., 2013a,b,c; De Oliveira et al.,

2014); characterize plant performance in

relation to soil nutrients (Russo et al.,

2005, 2013)

Litterfall 21 (29) Litter is collected biweekly to

monthly from traps, oven-dried,

sorted (to leaves, woody,

reproductive, and other), and

weighed.

In combination with woody growth data,

quantify aboveground net primary

productivity (ANPP) and its phenology

and environmental drivers

Bio-

micrometeorology

(13) Eddy-covariance technique is used

to continuously measure CO2,

H2O, and energy exchange

between ecosystem and the

atmosphere.

Understand forest ecophysiology and C

cycling on half-hourly to multiannual

time scales

Meteorology 5(33) Some sites have local

meteorological stations within

10 km of the plot.

Characterize climatic controls on forest

processes such as flower and fruit

production, tree growth and mortality,

and ecosystem-atmosphere gas exchange

(Condit et al., 2004; Wright & Calderon,

2006; Feeley et al., 2007a; Dong et al.,

2012; Li et al., 2012)

*Numbers indicate sites where measurements have been made or are in progress following a specific CTFS Forest GEO protocol.

Numbers in parentheses indicate total number of sites with measurements using any protocol.

†Varies by trait. Number indicates sites with measurements of one or more functional traits.

‡Varies by protocol. See Appendix S1 for details.
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measurements that are comparable across sites. The

Supplementary Information section provides further

information on methodologies (Appendix S2) and

details which measurements have been made at each

site (Tables S6 and S7).

Plants

Supplementary measurements on plants include liana

abundance and diversity, functional traits, high-preci-

sion diameter growth, flower and seed production,

seedling performance, and DNA barcoding (Table 3).

Liana censuses help to characterize the important role

of lianas in forest dynamics. Measurements of func-

tional traits – well-defined, measurable properties of

organisms that are strongly associated with ecological

performance – provide information on key attributes

and ecological roles of the species included in the cen-

sus. High-precision growth measurements provide

fine-scale understanding of temporal and spatial varia-

tion in tree growth and forest productivity. Flower,

seed and seedling censuses enable study of complete

tree life cycles, which are critically important for forest

regeneration and long-term species persistence. DNA

barcoding provides a powerful means of species identi-

fication that allows elucidation of phylogenetic relation-

ships and ecological roles (Dick & Kress, 2009; Kress

et al., 2009, 2010).

Animals-

Arthropod and vertebrate initiatives (Table 3) yield

understanding of the roles of these taxa in forest

dynamics through their roles as herbivores, pollinators,

seed dispersers, predators, ecosystem engineers, and

vectors of microbial diversity. In a unique effort to

monitor multitaxon assemblages in tropical rainforests

(Basset et al., 2013; but see Leidner et al., 2010 for long-

term monitoring of a single taxon), key arthropod

groups are being monitored to better understand how

interactions between arthropods and plants affect forest

dynamics and to evaluate the impact of global change

on the full range of forest trophic levels. Vertebrate

monitoring is helping to elucidate how mammals dif-

ferentially affect tree species and how modification of

the fauna may impact the future forest (e.g., Wright

et al., 2007; Harrison et al., 2013; see below).

Ecosystem and environmental

Supplementary measurements of ecosystem and envi-

ronmental variables include major aboveground C

stocks and fluxes (aboveground biomass, standing

dead wood and coarse woody debris, ANPPwood, litter-

fall, net ecosystem exchange); soil nutrients, C, and fine

root biomass; bio-micrometeorology, and meteorology

(Table 3). These measurements provide a basis for

understanding environmental and biotic controls on C

stocks and fluxes within forest ecosystems and how

these may respond to global change. Soils measure-

ments provide a basis for understanding the critical

role of soils in determining species composition, forest

structure, and primary productivity, as well as their

globally significant role as an important C reservoir.

Bio-micrometeorological measurements further eluci-

date the important role of forests in climate regulation

through ongoing exchange of CO2, H2O, and energy

between the ecosystem and the atmosphere. Meteoro-

logical data are critical for understanding how the bio-

tic community and whole ecosystem processes respond

to climate variables over half-hourly to multiannual

time scales.

Combined applications

In combination, the core tree census and supplemen-

tary measurements enable unique analyses of the many

interacting components of forest ecosystems, yielding a

holistic picture of forest dynamics. For instance, core

census data have been combined with data on lianas,

vertebrates, seeds, seedlings, and reproductive func-

tional traits to link decreasing populations of seed dis-

persers to changing patterns of plant reproduction,

liana abundance, and tree growth and survival (Wright

& Calderon, 2006; Wright et al., 2007; Ingwell et al.,

2010; Harrison et al., 2013). Core census, functional

trait, and DNA barcoding data have been combined to

understand the roles of phylogeny and functional traits

in shaping habitat associations and diversity in space

and time (Pei et al., 2011; Swenson et al., 2011). The

combination of core census data, plant functional traits,

ecosystem measurements, soils data, and weather data

lend themselves to parameterizing and evaluating eco-

system and earth system models. Thus, the broad suite

of standardized measurements at CTFS-ForestGEO

sites (Tables 1 and 3) provides opportunities to address

a multitude of questions on forest dynamics and their

responses to global change pressures.

Global change pressures at CTFS-ForestGEO sites

All ecosystems on Earth – including CTFS-ForestGEO’s

relatively intact forests – are affected by anthropogenic

influences (Fig. 3). Human appropriation of land and

water for agriculture and other purposes; emission of

extraneous compounds to the atmosphere (e.g., CO2,

CH4, N2O, NOy, NHx, SO2) and water (e.g., NO3
�,

PO4
3�); extraction of food, fuel, and fiber from natural

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712
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ecosystems; and transport of species around the globe

has so pervasively influenced Earth’s climate, hydrol-

ogy, biogeochemistry, land cover, and species diversity

as to warrant classification of a new geologic period in

Earth’s history – the Anthropocene (Schlesinger, 2012;

Vitousek et al., 1997a; Zalasiewicz et al., 2010, 2011).

Over the lifetime of the CTFS-ForestGEO network,

atmospheric CO2 has increased 16%, from 340 ppm in

1981 to 396 ppm in 2013 (Tans & Keeling, 2014), with

variable effects on climate globally. Over a similar time

frame, temperatures have increased across the network

by an average of 0.61 °C, with greater increases at

colder sites (Figs 3 and 4; Table S3; details on data and

analysis in Appendix S1). On both annual and daily

time scales, minimum temperatures have increased

more than maximum temperatures, leading to

decreases in the diurnal temperature range. Frost-day

frequency has decreased at sites that experience frost.

Potential evapotranspiration (PET) has increased

slightly on average (+2.5%) – particularly at low-PET

sites. A tendency for increased cloud cover has offset

the increases in PET that would be expected based on

temperature increases alone, and high-PET sites have

therefore experienced little change in PET on average

(Fig. 4). Changes in mean annual precipitation (MAP)

and wet-day frequency have been variable, with an

overall tendency toward increases (averaging 6.0% and

2.7%, respectively) – particularly at high-precipitation

sites (Fig. 4). Changes to the difference between annual

MAP and PET have also been variable, with a tendency

for wet sites (high MAP-PET) to become wetter – partic-
ularly in the Neotropical and Indo-Malay biogeograph-

ic zones – and low MAP-PET sites to become drier

(Fig. 4). Changes in seasonality and the number of

months with precipitation<PET have been variable

across the network. In summary, CTFS-ForestGEO sites

have experienced warming and variable changes in

precipitation and aridity.

Ongoing climate change is inevitable, with its course

dependent upon future greenhouse gas emissions and

land use patterns (IPCC, 2013). The IPCC AR5 exam-

ines four representative concentration pathways

(RCP’s), the most optimistic of which has greenhouse

gas emissions going to zero before 2100 (RCP 2.6) and

the most pessimistic of which denotes continuously

increasing emissions leading to a radiative forcing of

8.5 W m�2 by 2100 (RCP 8.5; IPCC, 2013). Across this

range of future scenarios, the HADGEM2-ES model

predicts MAT increases averaging 2.0 °C under RCP

2.6 (range: 1.2–3.6 °C) to 3.0 °C under RCP 8.5 (range:

1.9–5.7 °C) across the CTFS-ForestGEO sites (Fig. 2;

Table S4). This warming will push some tropical forests

Fig. 3 Map of CTFS-ForestGEO sites illustrating the severity of four global change pressures: changes in mean annual temperate and

precipitation relative to the 1951–1980 climatic average (MAT and MAP, respectively; Table S3), total N deposition (Table S5), and

an index of habitat fragmentation (see Appendix S1; Table S5). Numbers correspond to ID#’s in Table 2. Analyses are detailed in

Appendix S1.
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into climates with no current analog (Fig. 2). Predicted

changes in annual precipitation at these sites range

from �8.6% to +19.0% under RCP 2.6 and �13.6% to

+7.3% under RCP 8.5 (Fig. 2; Table S4). When coupled

with predicted warming and associated increases in

potential evapotranspiration, constant or decreasing

precipitation – which is predicted for approximately

half the sites (Fig. 2, Table S4) – implies that conditions

will become more arid. At most CTFS-ForestGEO sites,

soil moisture and relative humidity are predicted to

decline in the near-term (i.e., 2016–2035), even under a

modest emissions scenario (Kirtman et al., 2013; Sher-

wood & Fu, 2014).

The biogeochemistry of these sites has also been

modified by human activities. The global nitrogen (N)

cycle has been dramatically transformed by human

activities (Schlesinger, 2012; Vitousek et al., 1997a; Gal-

loway et al., 2008; Canfield et al., 2010). Atmospheric

deposition of reactive N can fertilize forests that are N

limited (Magnani et al., 2007; Yu et al., 2014), and can

also impair ecosystem function through soil acidificat-

ion and N saturation (Aber et al., 1989; Schlesinger,

2012; Vitousek et al., 1997b). At CTFS-ForestGEO sites,

current N deposition has a median value of 0.9 g

N m�2 yr�1 and ranges from 0.05 (Scotty Creek) to

3.8 g N m�2 yr�1 (Badagongshan, China; Fig. 3),

implying that N deposition at many sites may exceed

critical loads for soil acidification (Bouwman et al.,

2002). In addition, sulfuric acid deposition reduces soil

fertility (e.g., Likens et al., 1996) and increases tree mor-

tality (Dietze & Moorcroft, 2011). Across the network,

annual SOx deposition has a median value of 0.5 g

S m�2 yr�1 (range 0.08 g S m�2 yr�1 at Mpala, Kenya

to 3.1 g S m�2 yr�1 at Tiantongshan, China; Table S5;

data from Dentener et al., 2006; see Appendix S1 for

details). Nitrogen and sulfur deposition is predicted to

continue to increase in the future (Dentener et al., 2006).

At the local level, CTFS-ForestGEO sites have also

been directly exposed to a range of past and ongoing

anthropogenic perturbations. Some sites and their sur-

rounding areas were partially to fully logged in the

past, and in some cases the land was used for farming

or pasture (Table S5). Historical and contemporary for-

est loss (through deforestation or natural stand-clearing

disturbance) in surrounding areas has exposed some

sites to severe habitat fragmentation, whereas others

are surrounded by vast expanses of near-pristine forest

(Figs 3 and 5; Table S5). By the year 2012, 27 sites (pri-

marily in Europe, North America, and Asia) had tree

cover within a 5 km radius reduced by more than 10%

Fig. 4 Recent climate change at CTFS-ForestGEO sites. Specifically, shown is the change from the 1951–1981 average to the 2008–2012

average plotted as a function of the historical (1950–1981) average for four variables: mean annual temperature (MAT), mean annual

precipitation (MAP), mean annual potential evapotranspiration (PET), and the difference between mean annual precipitation and

potential evapotranspiration (MAP�PET). Solid and dotted lines represent the linear fit and its 95% CI, respectively; dashed horizontal

lines represent zero change. Based on CGIAR-CSI climate data (www.cgiar-csi.org/data; CRU-TS v3.10.01 Historic Climate Database

and PET estimates from Zomer, 2007; Zomer et al., 2008). Analyses are detailed in Appendix S1.
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relative to tree cover in the plot, and seven sites even

had reductions >40%. Generally speaking, percent tree

cover on the landscape decreases with distance from

the site, while recent (2000–2012) forest loss rates and

forest fragmentation increase (Fig. 5; data from Hansen

et al., 2013; see Appendix S1 for details). In addition to

forest loss in the surrounding landscapes, the majority

of sites have been exposed to past and/or ongoing

extraction of timber or nontimber forest products, hunt-

ing, or invasive species (Table S5). A few sites are have

high human population density in the surrounding

areas and are affected by urbanization.

Forest responses to global change

As described above, all CTFS-ForestGEO sites are expe-

riencing multifaceted global change pressures (Fig. 3).

With spatially explicit dynamic tree data for large forest

dynamics plots and the additional measurements sum-

marized above (Table 2), the network is poised to

advance mechanistic understanding of the impact of

global and environmental change on the world’s for-

ests.

Are forests changing?

Change is the natural condition of forests (e.g., Baker

et al., 2005; Laurance et al., 2009), which makes it chal-

lenging to detect and attribute directional responses to

global change pressures. A key finding from the net-

work is that forests generally, and in particular tropical

forests, are highly dynamic; for instance, in the first

18 years of monitoring at BCI, >40% of trees ≥1 cm

DBH (or 34% ≥10 cm DBH) turned over, and 75% of all

species changed in abundance by >10% (Leigh et al.,

2004). Superimposed upon this dynamism, forests are

responding to global change pressures. Data from the

network reveal some generalities and long-term trends

of change in forests worldwide.

Forest composition in terms of species and functional

groups has changed at multiple sites across the net-

work, in different directions at different sites (Condit

et al., 1996; Chave et al., 2008; Feeley et al., 2011;

Makana et al., 2011; Swenson et al., 2011). An analysis

of data from twelve CTFS-ForestGEO sites reveals that

environmental variability – as opposed to demographic

stochasticity – is the most important factor driving tree

population dynamics on decadal time scales (Chisholm

et al., 2014). Across relatively undisturbed tropical for-

ests, the dominance of slow-growing species increased

at nine of ten sites analyzed (significantly so at five

sites), indicating that these forests may be recovering

from past disturbances, even as they are impacted by a

variety of global change pressures (Chave et al., 2008).

In addition, at six tropical sites monitored over more

than 10 years, there have been long term increases in

the proportions of flowers and seeds produced by

lianas (Fig. 6; Wright & Calderon, 2006; Wright, unpub-

lished analysis) – a trend that corresponds with long

(a)

(b)

(c)

Fig. 5 Characterization of forest cover, fragmentation, and loss

in the landscapes surrounding CTFS-ForestGEO sites, with dis-

tance zones describing concentric circles centered at each site.

(a) Average % tree cover in year 2012; (b) % loss of existing tree

cover from 2000 to 2012 (note the vertical scale is the square of

forest loss); (c) Forest fragmentation, as characterized by forest

edge: area ratio in year 2012. Note that ‘forest’ can include agro-

forestry areas. Data from (Hansen et al., 2013). Analysis meth-

ods given in Appendix S1. Data for each site given in Table S5.
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term increases in the abundance of lianas observed on

BCI (Panama) and elsewhere in the tropics (Ingwell

et al., 2010; Schnitzer & Bongers, 2011). While commu-

nity change appears to be the rule rather than the

exception across the network, and while there have

been some instances of rapid change in forest composi-

tion (e.g., Condit et al., 1995; Chave et al., 2008), there

have not been any hugely dramatic changes such as a

forest die-off affecting the majority of large trees at the

network sites.

Trends in various components of aboveground net

primary productivity (ANPP) have also been moni-

tored at some sites. Across the network, the woody

component of NPP (ANPPwood) has increased or

decreased, as a function of both climate change and

succession. Forests globally are mixed in terms of

their productivity trends (Laurance et al., 2004; Clark

et al., 2010; Gedalof & Berg, 2010; Wright, 2010). For

instance, decreases in ANPPwood were observed in

tropical forests in Panama (BCI) during 1981–2005
and Malaysia (Pasoh) during 1990–2000 (Feeley et al.,

2007b) and increases in ANPPwood were observed in

secondary forests in Maryland, USA (SERC; McMa-

hon et al., 2010). Notably lacking is evidence of con-

sistent increases in ANPP, as might be expected

based solely on increasing atmospheric CO2 concen-

tration (e.g., Norby et al., 2005). In the tropics, allo-

cation of NPP to reproduction appears to have

shifted; at five of six tropical sites where flower and

seed production has been monitored for more than

10 years, there has been a long-term increase in

flower production but not seed production (Wright

& Calderon, 2006; Wright, unpublished analysis).

Ongoing monitoring of NPP and flower and seed

production will be vital to characterizing trends in

productivity and C allocation.

Finally, changes in standing biomass over time have

been detected. Across ten relatively undisturbed

tropical forests, highly resolved estimates of net

biomass change show that aboveground biomass

increased on average 0.24 � 0.16 Mg C ha�1 yr�1

(Fig. 7; Chave et al., 2008). This value is comparable to

(though slightly lower than) values recorded for net-

works of small forest plots in Amazonia (0.62 � 0.23

Mg C ha�1 yr�1; Baker et al., 2004), and Africa

(0.63 � 0.36 Mg C ha�1 yr�1; Lewis et al., 2009a). Com-

bining published data for the CTFS-ForestGEO, RAIN-

FOR, and AfriTRON tropical forest sites leads to an

overall average of 0.34 � 0.11 Mg C ha�1 yr�1 based

on a total of 8243 ha-years of monitoring (Muller-

Landau et al., 2014). Ongoing monitoring will be

important for quantifying trends in biomass in the

global forests represented by CTFS-ForestGEO.

What are the mechanisms by which global change impacts
forests?

While data from the CTFS-ForestGEO network add to

abundant evidence that forests globally are changing

(e.g., Soja et al., 2007; Lewis et al., 2009b; Allen et al.,

2010; Wright, 2010), it is difficult to identify the mecha-

nisms underlying such changes given ubiquitous and

simultaneous changes in multiple global change drivers

(Fig. 3). The information-rich nature of CTFS-Forest-

GEO sites has yielded insights into the mechanisms of

response to global change pressures.

Warming is expected to alter forest dynamics, but

predicting effects at the ecosystem scale remains a

major scientific challenge (e.g., U.S. DOE, 2012). Moni-

toring, physiological measurements, and nearby warm-

ing experiments combine to yield insights into how

Fig. 6 Ratio of flower production by lianas (33 species) to that

of trees (48 species) over 17 years on Barro Colorado Island,

Panama. Redrawn from Wright & Calderon (2006).

Fig. 7 Aboveground biomass change in twelve tropical forests.

Solid line represents mean for ten undisturbed sites; *indicates

disturbed plots. Replotted from Chave et al. (2008) with an

updated value for BCI (Muller-Landau et al., 2014; K.C. Cush-

man, personal communications).
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warming may impact forest dynamics. The effects of

warming are perhaps most dramatic at Scotty Creek,

Canada – the highest latitude site, which is experienc-

ing rapid warming (Figs 2 and 3; Tables S3 and S4) –
where accelerating permafrost thaw is resulting in tree

functional decline near forested plateau edges (i.e.,

reduced sap flow, radial growth, and leaf area) and

driving loss of forest area at a rate of 0.5% yr�1 (Baltzer

et al., 2014). At another Canadian site (Haliburton For-

est), a heat wave event during spring leaf-out in 2010

resulted in a >50% decline in leaf area of the dominant

tree species (Filewod & Thomas, 2014), and a large net

ecosystem carbon loss in the same year (Geddes et al.,

2014). However, at most temperate and tropical sites,

the impacts of warming are less obvious and tend to be

confounded by other aspects of global change (Fig. 3).

Data from four tropical forest sites (BCI, Huai Kha Kha-

eng, Lambir, and Pasoh) indicate that tree growth rate

correlates negatively with nighttime temperature, as

expected from increased respiration rates causing a

reduced carbon balance (Feeley et al., 2007a; Dong et al.,

2012) – a trend that has also been observed at an exter-

nal site in Costa Rica (Clark et al., 2010). In contrast,

warming experiments associated with two of the sites

reveal that warming may also directly or indirectly

increase woody productivity; specifically, soil warming

at Harvard Forest has increased tree growth through

increased N mineralization (Melillo et al., 2011), and

chamber warming experiments in Panama revealed

that increased nighttime temperatures increased seed-

ling growth rates (Cheesman & Winter, 2013). Ongoing

monitoring, experimentation, and modeling will be

necessary to disentangle the diverse productivity

responses of forests to warming. Warming may also

shift C allocation to reproduction; flower production at

BCI, Panama has increased with increasing temperature

(Pau et al., 2013). Future warming (Fig. 2) will inevita-

bly impact forests, and ongoing monitoring at CTFS-

ForestGEO sites should help to document and explain

these changes.

Changes in aridity and drought severity have the

potential to impact forests worldwide, including those

in wet climates (Allen et al., 2010; Choat et al., 2012).

Across the tropics, increases in aridity or the occurrence

of severe droughts have led to forest “browning”, mor-

tality episodes, or fires (Van Nieuwstadt & Sheil, 2005;

Lewis et al., 2011; Zhou et al., 2014), and there is con-

cern that potential future increases in aridity in some

parts of the tropics could result in severe tropical forest

dieback (e.g., U.S. DOE, 2012). Research across the

CTFS-ForestGEO network has yielded insights into the

role of aridity in shaping tropical forest dynamics.

Droughts in Panama (BCI, San Lorenzo, and Cocoli)

and Malaysia (Lambir) have revealed differential

drought sensitivity by size class, microhabitat associa-

tion, and functional type (Condit et al., 1995, 2004;

Potts, 2003). In Panama, mild or even fairly strong

drought increased both woody productivity and pro-

duction of flowers and seeds – presumably because of

increased solar radiation (Condit et al., 2004; Wright &

Calderon, 2006). At a tropical dry forest in India (Mu-

dumalai), drought increased mortality rate, but with a

2–3 year lag for larger trees (Suresh et al., 2010). These

findings yield insight into how moist tropical forests

may respond to predicted changes in aridity (Fig. 2;

Table S4; IPCC, 2013).

Beyond climate, impacts of other global change driv-

ers have been observed across the CTFS-ForestGEO

network. Nitrogen deposition (Fig. 1; Table S5) has

altered forest biogeochemistry across the globe. Tem-

perate forests are typically N limited; however, high N

deposition at Haliburton Forest, Canada, has caused a

shift from N to P limitation (Gradowski & Thomas,

2006, 2008), providing evidence of constraints on

increases in temperate forest productivity driven by

elevated CO2 and/or nitrogen deposition. Because

tropical forests are typically limited by elements other

than N, N deposition is not expected to increase the

productivity of these forests (Matson et al., 1999). At

the two tropical CTFS-ForestGEO sites where relevant

measurements have been made, increased 15N concen-

trations in plant tissues suggests substantial N deposi-

tion and altered N cycles (Hietz et al., 2011).

Specifically, on BCI, leaf N and d15N in recent (2007)

samples were elevated relative to herbarium samples

(~1968) (Hietz et al., 2011). These changes have been

mechanistically linked to increased N availability

through a nearby fertilization experiment, which

increased foliar N concentrations and d15N by similar

amounts but did not affect productivity (Wright et al.,

2011; Mayor et al., 2014a,b). A similar increase in d15N
was observed in wood from Huai Kha Khaeng, Thai-

land (Hietz et al., 2011). These results imply that, in

tropical forests, N deposition is accelerating N cycling

without increasing productivity, and reduced cation

availability resulting from N deposition may be one

potential explanation for observed declines in tree

growth rates at some tropical sites (see above; Matson

et al., 1999).

Habitat fragmentation (Fig. 5) and faunal degrada-

tion have also been linked to altered dynamics at

CTFS-ForestGEO sites. The CTFS-ForestGEO site near

Manaus, Brazil, is part of the Biological Dynamics of

Forest Fragments Project (BDFFP), which has revealed

that forest fragmentation rapidly and profoundly alters

tree, arthropod, bird, and primate communities, reduc-

ing species diversity and shifting composition toward

dominance of more disturbance-adapted species (Lau-
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rance et al., 2006). Across the network, more highly

fragmented sites (e.g., Witham Woods, UK; Bukit Ti-

mah, Singapore; Lambir, Malaysia; Heishiding, China;

Fig. 3; Table S5) tend to have degraded faunas, as indi-

cated by the absence of apex predators and larger verte-

brates that were present historically, whereas faunal

communities tend to remain more intact in unfragment-

ed forests such as Yasuni (Ecuador), Rabi (Gabon), and

Scotty Creek (Canada) (Turner & T Corlett, 1996; La-

Frankie et al., 2005; Laurance et al., 2012; Harrison et al.,

2013;W.F. Laurance, personal communication). As

detailed below, faunal degradation – whether caused

by habitat fragmentation, hunting, or other pressures –
has strong impacts on forest structure and dynamics.

The strong influence of fauna on forest composition

and dynamics (e.g., Wright, 2010; Estes et al., 2011; Sch-

mitz et al., 2013) has been documented at several CTFS-

ForestGEO sites. At Mpala, Kenya, an experiment

excluding herbivores of different sizes and replicated

across a rainfall gradient revealed that herbivores of

different sizes influence the biomass and growth rates

of trees and understory plants, plant community com-

position, and small mammal communities (Goheen

et al., 2013). At Mudumalai, elephants (Elephas maxi-

mus) cause high mortality among the small- to med-

ium-sized stems, particularly in a few favored forage

species (Sukumar et al., 2005). At SCBI (Virginia, USA),

where white-tailed deer (Odocoileus virginianus) popula-

tions greatly exceed their historical levels, 20 years of

deer exclusion from a 4-ha subsection of the CTFS-For-

estGEO plot has resulted in a >4-fold increase in sap-

ling abundance relative to heavily browsed forest

outside the exclosure (McGarvey et al., 2013). Large

impacts of mammalian herbivores have also been

found in an exclosure study adjacent to the Pasoh plot

site in Malaysia (Ickes et al., 2001), where native pigs

(Sus scrofa) have a dramatic effect on tree recruitment.

In Panama, comparison of forest plots protected from

bushmeat hunting with those exposed to poachers

revealed that by reducing the abundance of frugivores

and seed dispersers, hunting decreases the abundance

of plant species with seeds dispersed by these animals

while increasing the abundance of species with seeds

dispersed by bats, small birds, or mechanical means

(Wright et al., 2007). The latter includes lianas whose

seeds are much more likely to be dispersed by wind

(60% of liana species vs. 25% of canopy trees and <10%
of midstory and understory trees and shrubs). Lianas

have thus increased disproportionately in abundance

where hunters remove the frugivores that disperse the

seeds of most tree species, hence hunting may have

unforeseen consequences for carbon sequestration (Jan-

sen et al., 2010). Directional change in tree communities

driven by faunal degradation has also been

demonstrated. At Lambir, where populations of large

mammals and birds have been severely impacted by

hunting, tree community dynamics changed

profoundly from 1992 to 2008 (Harrison et al., 2013).

Specifically, sapling densities increased and regenera-

tion of tree species with animal-dispersed seeds

decreased and became more spatially clustered (Harri-

son et al., 2013). Thus, ongoing faunal degradation due

to hunting and habitat fragmentation in many forests

globally is expected to alter forest community composi-

tion, tree dispersal and regeneration, species diversity,

forest structure, and carbon cycling.

CTFS-ForestGEO research has also shed light on com-

munity interactions that will act to either magnify or

buffer forest responses to global change. Species are

linked to one another through complex webs of interac-

tion. For example, mapping of quantitative trophic food-

webs at Wanang (Papua New Guinea) and current

efforts to document tritrophic foodwebs of seeds, seed

predators and parasitoids at this same location, at Khao

Chong (Thailand) and Barro Colorado Island (Panama)

demonstrates the complexity of ecological interactions in

forest ecosystems (Novotny et al., 2010). Studies of seed

dispersal and seedling recruitment demonstrate the criti-

cal role of vertebrates and insects in tree reproduction

and the composition of future forests (e.g., Wright et al.,

2007; Harrison et al., 2013). It is therefore unsurprising

that global change impacts on one group cascade

through the ecosystem. For example, as described above,

dramatic reduction in large mammal and bird popula-

tions at Lambir, Malaysia has altered the dynamics of

tree dispersal and regeneration (Harrison et al., 2013).

Similarly, in the light-limited moist tropical forests of

Panama, El Ni~no events bring relatively cloud free,

sunny conditions that enhance fruit production while

subsequent La Ni~na events bring rainy, cloudy condi-

tions, and lower levels of fruit production that can lead

to famines, particularly among terrestrial frugivores and

granivores (Wright et al., 1999; Wright & Calderon,

2006). Climate change is bringing changes in cloud cover

and atmospheric transmissivity to PAR (Table S3) with

cascading effects on frugivores, granivores, and the

plant species with which they interact.

At the same time, the diversity and complexity of for-

est communities may serve to provide some resilience

to global change. A diversity of tree physiological strat-

egies implies a wide range of responses to global

change that helps to provide ecosystem resilience (e.g.,

Isbell et al., 2011; Mori et al., 2013). For example, Pana-

manian tree species have displayed a wide range of

physiological responses to temperature variation

(Cheesman & Winter, 2013; Slot et al., 2014), and trees

of different species have generally responded differ-

ently to experimental manipulation of CO2, tempera-
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ture, or precipitation globally (Anderson-Teixeira et al.,

2013). The resilience enabled by species diversity may

be exemplified by the stability of biomass, size struc-

ture, and functional composition of the BCI forest

(Chave et al., 2008; Swenson et al., 2012) despite severe

droughts that impacted drought-sensitive species (Con-

dit et al., 1995, 1996). In addition, in the tropics, perva-

sive negative density dependence – i.e., elevated

mortality of a plant species in areas where it is abun-

dant – may buffer change because as a species becomes

rare, it will suffer less from negative density depen-

dence (Comita et al., 2010). Thus, accounting for biodi-

versity in ecosystem models will be important for

predicting forest responses to climate change. While

such complexity makes it challenging to predict forest

responses to global change, it may serve to partially

buffer forest response to global change, which might

otherwise be more dramatic.

Conclusions

The CTFS-ForestGEO forest dynamics sites are repre-

sentative of the world’s more intact forests, covering a

diversity of geographical, climatic, edaphic, topo-

graphic, and biotic environments (Figs 1 and 2;

Table 2). Yet, even this selection of the world’s more

intact forests is being impacted by multifaceted global

change drivers (Figs 2–5). Because many interacting

species and processes are simultaneously being affected

by a variety of global change pressures, extracting a

mechanistic understanding of observed forest changes

is challenging, requiring a holistic understanding of the

abiotic setting, site history, demography for all tree life

stages, trophic interactions, and ecosystem-level pro-

cesses. The broad suite of measurements made at

CTFS-ForestGEO sites (Tables 1 and 3) makes it possi-

ble to understand the complex ways in which global

change is impacting forest dynamics.

Ongoing research across the CTFS-ForestGEO net-

work is yielding insights into how and why the forests

are changing. As global change pressures inevitably

intensify (Fig. 2; IPCC, 2013), ongoing monitoring

across the network should prove valuable for docu-

menting and understanding multifaceted forest

responses and feedbacks to the climate system. To pro-

ject into the future, broad suite of variables measured at

CTFS-ForestGEO sites (Tables 1 and 3) will be invalu-

able for parameterizing and evaluating ecosystem and

earth system models, particularly those that character-

ize forest demography and differences among species

or functional groups (e.g., Moorcroft et al., 2001; Medvi-

gy et al., 2009). Together, CTFS-ForestGEO’s unique

standardized core census (Table 1) and supplementary

measurements (Table 3), applied across all of the

world’s major forest biomes (Fig. 1; Table 1), will pro-

vide mechanistic insight as forests change in the 21st

century.
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